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SIGNIFICANCE AND EXPLANATION

The study of metric upper semicontinuity (stability) is of

importance in optimization theory. The report discusses classical

and recent techniques of establishing metric upper semicontinuity

and provides their extensions. The metric upper semicontinuity of

intersections, the importance of which has been recognized only

recently, and several applications to optimization problems are

discussed.
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METRICALLY UPPER SEMICONTINUOUS MULTIFUNCTIONS

AND THEIR INTERSECTIONS

Szymon Doleckit

A multifunction I from a topological space Y into a metric space

(X, p) is called metrically upper semicontinuous at y if for each r' 0

there is a neighborhood W of y0  such that

(0.1) rW CB(I"yO, r)

where for A CX, B(A,r)= {x:B(x,r) nA/ }, B(x,r)= {v:p(x,v)<r) and

rW = U ry. Such multifunctions are frequently called upper Hausdorff semi-
yEW

continuous (u.H.s.c.)

L Classical methods of establishing metric upper semicontinuity and

their recent extensions (Sections 2 and 3) apply to certain classes of multi-

functions. But, what is really needed in applications (e . g., duality in

optimization theory, exact penalty methods, sensitivity) is metric upper

semicontinuity of the intersections of some multifunctions from

the above mentioned classes.

A dramatic suspense is caused by the fact that the intersection of

two metrically upper semicontinuous multifunctions need not be itself

metrically upper semicontinuous. This fact was recognized in [Z] and a

way of getting around this difficulty in some applications was proposed in

[7]. In [15] Rolewicz gave a geometrical sufficient condition (for the inter-

section of u.H.s.c. multifunctions to be u.H.s.c) and applied it to some

open problems concerning continuously differentiable maps. His sufficient

condition however does not apply to some other important problems.
tMathematics Research Center and Mathematics Department, University o

Wisconsin, Madison, and Institute of Mathematics, Polish Academy of
Sciences, Sniadeckich 8, Warsaw, Poland
Sponsored by the United States Army under Contract No. DAAG29-75-C-0024,
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In Section 4 we provide a general necessary and sufficient condition

for metric upper semicontinuity of intersections. As a special case it yields

the Rolewicz condition and enables us to refine and to extend the results

of [151 (Section 5).

Section 6 provides an example of applications of our general condition

to problems of different nature than those at Section 5.

1. Some basic facts about metric upper semicontinuity.

Let (Y, 6) be a metric space. A function q: - IR+U{®} is

called a rate of semicontinuity at yO, if

(1.1) B(Y q(r)) CB(Fyo, r) r> 0

A function 1R+ - IR + 0{ is called a modulus of semicontinuity at YO, if

(1.2) l B(Yo0 r) CB(ryo, P (r)) r 0 .0

F is u.H.s.c at yO if and only if there is arate q strictly positive

(there is a modulus P such that lir P (r) = 0).
r-O

We say that r is graph-closed at yo0 if

(1.3) ry0 n a crw

where 0(y 0 ) is a neighborhood basis at y 0 and cl stands for the

closure. Note that r is graph-closed at y0  for each y 0  in Y, if

and only if the graph of F q(r) { ((y, x): x e ry} is closed. It is a

simple observation that

- O R
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1.1 Proposition

If ry 0 is a closed set and r is u.H.s.c at y0, then r

is graph-closed at y0 .

(Topological) upper semicontinuity implies metric upper semicontinuity,

the converse statement being true under some auxiliary assumptions (see [6]).

A multifunction r is said to be metrically continuous (Hausdorff

continuous) at y0 , if for each r '> 0 there is a neighborhood W of y0

such that (0.1) holds and for y in W

(1.4) Fy 0 CB(Py, r)

Formulas (0.1) and (1.4) may be rephrased: h(rY0 , y) < r, where

h stands for ths Hausdorffdistance: h(A1, AZ)= in {r : A1 c B(A2, r),A. c B(A1, r)}

If there are a positive function P tending to 0 with its argument

and a 6 > 0 such that 1 is a modulus of semicontinuity of r at each y

in B(y0, 6), then r is metrically continuous about y 0 * In other words,

(1.5) h(r'yl, ry) < P (p(y1 , y)). y1, Y2 y B(y 0 , 6)

If P is linear about 0

j. and (1.5) holds we say that r is (locally) Lipschitz at y 0. If (0.1)

holds and, (1.4) holds for all y in W r1X, then we say that I

is domain continuous at y 0 "

7 We say that r is lower semicontinuous at (y. x) at a rate q,

if

(1.6) r -lBl. r) D IIIIII. [ , 1



4

r is uniformly lower semicontinuous at (yoV x0 ) if there is a neighbor-

hood Q of (Y, x0 ) and a (strictly) positive function q such that

for each (y, x) in Q n (r), r is lower semicontinuous at (y, x)

at the rate q.

1.2 Proposition [2]

r is uniformly (at a rate q) lower semicontinuous at (y0, X0 ),

if and only if there are neighborhoods V of x0 and W of y0  such

that for each y in W the multifunction r(y) defined by

(1.7) r(y)y = ry r(y), = V n rz, z / y

is u.H.s.c at y at a rate q, where for some r 0 > 0 q(r) = q(r)

as r i r0 •

A simple but important generalization of this proposition we obtain

by restricting the multifunction r to its effective domain

r-lx = {y: rypt •l}. Then, all the notions may be related to the metric

space r- : for example, r is domain lower semicontinuous at (y, x)

at a rate q, if

-IB(x , r) D B(y, q(r)) r F-X.

Observe, however, that metric upper semicontinuity when related to its

domain remains unchanged. The resulting theorem is obtained from

Proposition 1.2 by replacing lower semicontinuity by domain lower semi-

continuity and "for each y in W" by "for each y in W f r-LX.

The importance of domain semicontinuities was recognized by

Levine and Pomerol [11].

VW
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1. 3 Example

Let X be a Banach space and let f be a nonzero continuous

linear form on X. Let r :1R2 - 2x  be given by: r(rl, r {x: f(x)= rI , f(.:)

r is not lower semicontinuous, but it is uniformly u . H. s -c at

each point of its domain {(r , r 2 ):rl = r,}.

1. 4 Corollary

r is uniformly (domain) lower semicontinuous at (y 0" x 0 ) at a

rate q, if and only if there are neighborhoods U of x 0  and W of

and a number r O > 0 such that for x in V and for y in W (in
W -1X~

w n r--l

(1.8) dist(y, r-1x) < q(r) =" dist (x, ry) < r, r < r 0 .

Proof It is enough to prove "non domain" part of the corollary. We

rephrase the conclusion of Proposition 1.2 for each y in W for r < O,

(1.9) rB(y, q(r))n V CB(ry, r)

Let x be in rB(y, q(r)) fl V. Equivalently, x is in V and r-1x

intersects B(y, q(r)). In other words dlst(y, r- x) < q(r). On the other

hand x is in B(ry, r), whenever B(x, r) meets ry, or

dist(x,r7 < r•

1 4.

.... .. -. ...... _ _ _ _ _ I Z



2. Where does one encounter metric upper semicontinuity

The Banach open mapping theorem states that if a continuous linear

operator F maps a Banach space X onto a Banach space Y, then the

multifunction F :Y - 2 is lower semicontinuous at (0, 0) at a linear

rate. Linearity implies uniform lower semicontinuity everywhere, hence

F-1 is metrically continuous, in fact, Lipschitz. More generally, if

F :Y - 2X  is a multifunction with closed convex graph such that

YO c Int F- X, then for every x 0 in F y0, F is lower semicontinuous

at (y 0 x 0 ), thus, by convexity, uniformly lower semicontinuous at

(Yoy Xo0)([161 ).

Consequently, in view of Proposition 1.2, the multifunctions F(y)

defined in (1.7) are u.H.s.c (this property we call sometimes 6 - semi-

continuity). Moreover, if y0 E IntF-iX, then all graph closed convex

multifunctions which are "close" to F are lower semicontinuous at (Y0 ,X0)

at a uniform universal rate (a perturbation theorema [2], see [10] for a special

case). This nice property of families of graph-convex multifunctions was used in

proving uniform lower semicontinuity of non-convex multifunctions (that can

be approximated by families of graph-convex multifunctions) by Lusternik

[1Z]: let F be a continuously differentiable (about x0 ) mapping into a

Banach space Y such that F'(x 0 )X = Y; then F-1 is uniformly lower

semicontinuous (at a piecewise linear rate) at (F(x0 ), x 0 ). Extensions of

the Lusternik theorem were proposed by Ioffe-Tikhomirov [9] , Robinson

[ 14] , loffe [ 8] and the present auther [2] [3] .

In this type of results, an approximation theorem [2] (an

extension of" the Ptak theorem [13]) is very useful. We ilhall need

only its special form:

:.) Actually Lusternik proved a special consequence of uniform lower semi-
continuity.

( __ ____ ________ ____ ____ ____
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Let I a mnu]LtfifnAion from] a metric space into a complete

:-Atric space ',. Supj_ ose tihat there are a neighborhood Q of (y x0 )

numbers r,) 0, 0 b such that for ( y, x) in Q I ()

(B1 B-(P B (x,rfl, tr) DB (y, br), 0O<r ! r 0

Then F is uniformly lower semicontinuous at (yo, xO) at a rate q

such that q (r) '( b- i )r. r f

Theorem 2 .1 may be related to the domain of F. Then (2.-1) becomes

(2.1') B(F B (x, r), )r) DB (y, br) 1r- X, 0O<r ar 0

and the thesis is that of uniform domain lower semicontinuity. The appli-

cability of Theorem 2 .1 appears through the following scheme: Let X be

a cornpletc metric space, Y, Z Banach spaces, F : Y - 2 Xa multi-

function, {F (y, x)) a family of (graph -) convex, closed multifunctions

from Y into Z (such that 0 c ('y, x)O for each (y, x)).

x

Y

Consider the following assumptions: there are numbers 0 <8a < 1 and

c ()such that for each 3 > 0 there is an r > 0 such that

(B2 r( B(x, r), nrlD y + r(y, x) (0, ar) n B(0, cr)

.................



for Ix-x 011 <r 0 , iy -y 0y <ro yE - x, r r 0  and foreach E

there are a neighborhood V of (y 0 , x 0 ) and vI such that

(O.3) B(F (y,x)-IB(0, ar) fl B(0, cr), Cr) Dr (y0,x0 ) B( 0, ar) " B( 0, cr) r :

Such a family {r (y, x)) is called an image nearly inner approximation

of r at (y 0 , X0) (inia) (see (2] [7] [3] for special cases)

2 .2 Proposition

Let {r (y, x)} be an inia of r at (y 0 , x 0 ). If

(2.4) 0 E Int -(Y 10

then r is uniformly lower semicontinuous at (y 0 , x 0 ) at a piecewise

linear rate.

Proof

It follows from the Baire category theorem and from the convexity of

r (yo, x0 ) that there are b0  and r1 such that

r (yx 0 )1 B(0,ar) D B( 0, b 0 r), r : r1

Let b1 > C> 0. On setting bI = min(b 0 ,c) r2 = min (ro,r) we have,

inviewof (2.3), that

B( r'(y,x)-I B(O, ar) nB( 0, cr), Er) n B(0, blr), r r.

for (y,r) In V.

how*
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Now, we choose such that - + E < b and in vie.: c:

(2.2) we obtain

B(-I B(x, r), (,) + E)r) D B(y, blr)

for Ix - xoI < r2 , I Iy- yo i I < r2 ,y E r- x,rr 2 . In virtue of Theorem

2 .1 the proof is complete.

The above scheme embraces various convex approximations of multi-

functions (continuous differentiability and more generally strict differentia-

bility, Levitin - Milyutin - Osmolovskii approximation (see [2]), their

combinations and extensions [3] • We are going to present two concrete

results, not most general, but having some important implications.

2. 3 Example

Let G: X - Y be a continuously differentiable mapping about a

point x 0 of a Banach space X and let D be a closed convex cone

in a Banach space Y. Consequently for each O > 0 there is r0 > 0

such that

(2.5) I IG(x + h) - G(x) - G(x)hl I < j jhi I

for IIx- x011 < r0 , I IhlI < r0 . Define

(2.6) ry= {x: y G(x) +D}

and note that

t_ _A
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(7) yx) z {h :z -EG(x )h + Dl V.F X

Constitutes an imagle nearly inner approximation of r- at (G (x 0 ), x 0 )

As a Corollary of Proposition 2 .2 one has

2. 4 Proposition ([14])

if

(2.8) G (x0 )X + D-,Y

then F of (2 . 6) is uniformly lower semicontinuous at (G(x 0) x 0  at

a piecewise linear rate.

Let Ci be a family of subsets of a Banach space X. A family

r,of closed convex cones is said to be uniformly tangent to q. I at x 0 ,

if for each r- 0 there is an r> such that for x r A (boundary

of A), i x - x0 1 < ro I A c Qj there is an element A'(x) of

G such that for j- xjj < r0 , one has

(a) if v is in A (x), then

dist (v, A) < E:II v - xj I

(2.9)

(b) if v is in A, then

di st(v, A'(x)) < EIv - xI

2.5 Proposition (see [3])

Let r be given by (2.-6), r (x, y) by (2.7) and suppose that

('25) holds. ______ .



Th& fc 4x + r (y, x)(O)} is uniformly tangent to {P(y)) at

Proof

It follows from Proposition 2.4 and Corollary 1.3 that there are

numbers k 0, r 0  0 such that for !i v- x0  <r 0 , z- y 0 ) <r0

(2.11) dist(v, r z) ' k dist(z, r-Iv)

Lot F k- and let v be in x + r (y, x)(0), (y E G(x) + D) equivalently

0 r'(y, x)-(v - x) = G'(x)(v - x) + D thus there is d in D such that

0 G'(x)(v - x) + d and in view of (2.5) and (2.6), G(x) is in

B(r-lv, I v - x), hence recalling (2.11)

dist (v, r(G(x))) !r k- iv - x

Let v be in FG(x). Thus there is d in D such that G(v) + d G(x)

and by (2.5)

G'(x)(v - x) + dl < I Lv- x

By (2.8) and the continuity of G'(x) there is an element w of X such

that G(x)(v- w)= 0 and w- xi k G'(x)(v- x)+dH < k9v- x v •

(In fact k may be t;ken the same as in (2.11)).

The follonii ren:ult i:1 that of uniform lower semicontinuity of a

multifunction r :Y - -,Ih,:rr; Y is a Banach space and S is a

' closed subset of a B;n;wh :rj;i ;,drmitting a uniform tangent family. This



result generalizes Proposition 2 .4 and is very close to that of Ioffe [ 8

Theorem 21.

In our case (in comparison to [8]) the set S will be rure specific,

the multifunction F more general, the sufficient condition (controllabi It'

much easier to verify and the conclusion stronger (uniformity). Let G be

continuously differentiable mapping from X into a Banach space Z, D a c K._

convex cone in Z such that

(2.12) G'(x 0 )X + D = Z

Set

(2.13) S = {x: 0 E G(x) + D}

Denote by

(2.14) T(x) = {v : 0c G(x)v +D}

Let F be a continuously differentiable mapping of X into a Banach spac,

Y, C a closed convex cone In Y. Consider the multifunction r Y - S

defined by

(2.15) I xy= {x S:ye F(x)+C)

Z. 6 Theorem

If (2.12) holds and



4- (2.16) F (x0 )(T(xO)) + C =Y,

then the multifunction r of (2.15) is uniformly lower semicontinuous at

(F(x 0 ), x 0 ) at a piecewise linear rate.

Proof

We shall show that the multifunction r '(y, x) : Y - 2 defined by

(2.17) rF(y,x)z = {h c T(x) : z E F'(x)h + C } for yE r -Ix.

is an image nearly inner approximation of r at (F(x 0 ), x0 ). It will be

then enough to apply Proposition 2. 2, since our assumption in view of

(2.17) implies (2.4). It follows from Proposition 2.5 that {x + T(x)},

x E S, is a family uniformly tangent to S about x0 * Consequently,

there is a family of functions {tx}

(2.18) :x + T(x) - S

such that for each 1 > 0 there is an r0  0 such that if ix- x0  c r0

and IIv-xI I<rO, then

I I tx(v) - Vl I d V -Xl1 I

Therefore, for r i r0

tx(B(xr) x + T(x)) C B(x,(l + %I)r) t S

There is an r, i r0 such that In B(x, 3rl) the mapping F is Lipschitz
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.,ontf-,:oL,.; with constant 1. Hence for each vin B (x, r) ~'x + T (x)

there is an element E (v) in S -B (x, (I + )r) such that

-! or

(Z -1) B (T (3(x, (I + 69)r) - S),t 9r) F(B(x,r) x~ + T(x))

On the other hand, there is an r r1  such that for

lx-x ll gr 2 ,'v- xi r

17(v) - F (x) - F'(x) (v - x); ~ v - x

in particular this is true for v - x in T(x), thus

(2.20) B (F (B(x, r) -,x + T (x) , 0r) DF (x) + rF'(x) (B (0, r) T T(x))

On recalling (2 .15) and (2.17) we conclude that

(2.21) B(I- 1 B(x, r), r))y +rF (y, x)1 B (0, r

for r 1~-ixxI r'-yEFx hence (2.2) is satisfied.

We shall show now that the family {T(x)} is continuous in the

following sense. For each F- 0 there is r> 0 such that for

x 1 - x 0  K r' Ix 2 -x 0 1 < r one has that if h E T(x,), then

ri i t (h, T (x 2 )) !r Ii hi I In fact, for each e ~ 0 there is r 0 > 0 such

that, for xj, x 2  in B(x0, r 0)

GIx~ '(,h !

I _____ ______



L,ut h T(Xl). There is d in D such that G (x.)h + d 0. On

the other hanc, I

dist (0, F (G(x 2 ), x2 ) h) !c G'(xl)h + d
2 2

(:.22) G (xl)h +d - G (x,)h- d'

E h!

By the uniform lower semicontinuity of the family F (y, x) about (yo x 0 )

there are m 0 and r 0 zr 1  0 such that

dist(h, F (G(x 2 ), x2 )0) : m dist (0, F (G(x2, X2) h) 9 me , I hi 1;

(the last estimate following from (2.22). Set me 6 ! . Consequently,

x - B(O, r) n T(x) and x - F'(x)(B(0, r) n T(x)) + C are continuous multi-

functions and (2.3) is satisfied.

We shall now provide another condition equivalent to (2.16) combined

with (2.12). Let j:X-- Y xZ be given by

a(x) = (F (x), G (x))

and let C C / D.

2.7 Lemma

Combined, conditions (Z.12) and (Z.16) are equivalent to s

(2.23) j(x 0 )X + C YxZ

* L



Proof

IIPofIt follows from (2.23) that for each y in Y there is an x

such that (y, 0) e (F (x0 )x + CG (x 0)x + D) what amounts to (2.1 6 ).

Similarly, (2 .12) follows immediately from (2. 23).

Suppose (2.12) and (2.16) and take (y,z) c YxZ. By (2.12)

there is an x such that z E G (x0 )x + D. By (2.16) there is an x

such that 0 e G (x 0 ) + D and y - F (x0 )x C F(x 0 )X + C. Consequently

z G'(x 0 )(x +x) +D and y E F'(x 0 )(x + x) + C.

3. On farther extensions

Proposition 2.4 may be generalized by replacing the cone D by a

cone-valued multifunction.

Let G be a continuously differentiable (about x 0 ) mapping from

a Banach space X valued in a Banach space Y. Consider, as well, a

multifunction

C : X-
Y

such that for each x, Cx is a closed convex cone in Y with the

vertex at 0. We assume that for each E'> 0 there is a neighborhood

Q at x 0 such that for every x from Q and for each h from Cx 0

there exists an h(x, Ih(x) hI = Ihi In Cx such that

(311) 11 h(x) -h hl •itEI

-- -
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Rephrasing, for each E > 0 there is a neighborhood Q of x 0  such

that for each x in Q

(3.2) B(Cx n B(, r), r) D Cx 0 fl B(0, r), r. 0

Define

(3.3) Ty = {x : y c G(x) + Cx}

The multifunction
1 -1

(3.4) r(x, y)z = {h : z c G (x)h + C x), y F- x

is an image nearly inner approximation of r at (x0, G(x 0 )).

Indeed, (Z.Z) (with c = +w) follows directly from the definitions.

In order to check (2.3) let v c r(y 0, x0)F B((, r) n B(0, r); there are g

in B(0, r) and h in Cx 0  such that v = G (x0 )g + h. Certainly

Ihl I I lvjI + I IG'(x 0 )l 1gI l , thus h is in B(0,(l + k)r) where

k II G'(x 0 )I I. There exists r0 > 0 such that

if I Ix 0 - xl I <r 0 then there is an h(x) in Cx such that (3.11 holds.

On the other hand, by the continuity of G ('), there is an rl < r 0  such

that

l lG'(x)g- G'(x0 )gll < ElIgIl as l lx-x 011 <r,
I I

Therefore the element w = G (x)g + h(x) of T (y, x)-'B(0, r) satisfies

lIv - wI < E(2 + k)r and by convexity there is z in r'(y,x)B(0, r) n B(0, r)

- J I - ask-.-



S - " 2' [ + k)r. Therefore for the discussed multi-

.2.3) holcs where a -- 1, c 1, F is replaced by 2- (2 + k).

As cn i::-mcdiate conclusion we formulate

Theorem 3.1

If

(3.5) G (x0 )X + Cx 0 - Y

then the multifunction (3.3) is uniformly lower semicontinuous at (F(x 0 ), x O)

at a piecewise linear rate.

Another way of generalizing results of type of Proposition 2.4 or

Theorem 2 .6 may become a temptation, when one observes that if for a

continuous linear operator F (from a Banach space X into a Banach

space Y) we have that FX is closed, then the multifunction F- 1 is

u.H.s.c (domain Lipschitz continuous). This is due to the fact that F- 1

is uniformly domain lower semicontinuous (its domain FX is itself a

Banach space, hence we may apply the Banach open mapping theorem).

However, an attempt to replace, say (2.8) in Proposition 2.4 by

an assumption that G (x 0 )X + D is closed, may be discarded quickly by

noting, that even for D {0) the property "G (x)X is closed" is

unstable (see e.g. [10] p. 57).

There remains however a possibility of generalization. when

0(xo)X is of finite codimension (the property which is stable) we eliminate

this possibility too.

~ 7 _ - - -- - -



Examolc 3.2

Let X be a H~lbert space which orthonormal basis is denoted by

f0 : Let G : X-1R 2 be given by

G(x) (gl(x), g2 (x))

C X,

where al(X) = x (where x V xe.) and g(x)=x + V1__i- Of-- i
i=l 1=2

course, G is continuously differentiable and G (O)X has finite co-

dimension. But the multifunction G-  is not domain lower semicontinuous.

To see this observe that G-1(0, 0) = {0} and for r < 0

2
CO X

G (r, 0)- x: xfr } thus for Irl arbitrarily small there are
i:2

x in G- (r, 0) that do not belong to B(0, 1).

3.3 Example
00

Modifying Example 3.2 set g 2 (x) =x I + x.. In this case tne
2i 2 1
-1-

dimension of G'(0)X is one, but G- 1 is uniformly domain lower

semicontinuous (at 0) (for details see Example 4.6).

z7
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4. General conditions on metric upper semicontinuity of intersectionE

Let A1, A2  be subsets of a metric space (X,p). We say that

A1 and A separate decisively, if for each e > 0 there exists a

6 > 0 such that

(4.1) B(A 1 n A 2, E ) DB(AI, 6) n B(A 2 , 6)

When A1 and A2 do not intersect, we understand that

B(A1 n A., r) is empty for each E; then condition (4.1) becomes that

there is a 6> 0 such that B(AI, 6) n B(A2, 6)=

When A1 is a subset of A2, then the sets separate decisively

and 6 miy be taken equal to E.

4.1 Lemma

Let X and Z be two metric spaces, p a mapping of X onto

Z such that p and p-1 are uniformly continuous. If A1, A2  separate

decisively, then p(A), p(A2 ) separate decisively.

Proof

Let 0> 0. There is S > 0 such that for each x,

B(p(x), ,) Dp(B(x, E)). Consequently

B(p(A1)fl p(A?), -) = B(p(A1 r)A?), ) DpB(A1 n A2, C)

In view of (4.1) and the above inclusion, there is 6 such that

B(p(A1 ) n P(A), 0) D p(B(A, 6)) fl p(B(A2 , 6))

-OM ... i.



By the uniform continuity of p-1 there is a such that

B(AI, 6) p - 1B(p(Al), ), p(A2, 8) D p-'B(p(A2, )

thus

B(p(A I ) n p(A?), -a) DB(p(AI), ) B(p(A z , )

4.2 Lemma

The sets A1 and A2  separate decisively, if and only if there

exists a function h : R+ × 1R+- + u {+ .} continuous at (0, 0)

and h(0, 0) = 0 such that

(4.Z) dist(x,A1 M A2 ) c h(dist(x, A), dist(x, A2 ))

Such a function h is called a modulus of separation.

Proof

Assume that such a function exists and set E > 0. By the contin-

uity of h at (0, 0), there is a 6> 0 such that h(r1 , r2 ) < E, if

r1 < 6 and r <2 6. If an element x is in B(A1, 6) r B(A2, 6) (or

equivalently if dist(x, A1) < 6 and dist (x,A.) < 6), then by (4.2)

dist (x,A1 n A.) < e, hence it belongs to B(A1 n A., E).

On the other hand, if A1 and A2  separate decisively, then for

each n t 1 there is a 6 n> 0 such that

A (4.3) B(A n A2 ,1 ) DB(A1 , 6  n B(A2 , 6 n•

,7 ,



\V" .i:. th functions h + 1 R+ - F {-4- by scttin,'.... ... n + +

hnrl r _,, , n' if r < 6n r2 n

(4.4) h r.) n n n

+c, otherwise

aiQ -finc

i4.5) h(rl, r?) inf hn(rlrZ)

The function h of (4.5) satisfies the listed properties. (It is obviously

continuous and 0 at (0, 0).)

Take an arbitrary x. If max (dist (xAl), dist (x,A2 )) 1, then

by (4.4)

(4.5) h(dist (xAl), dist (x, A2 )) = +

and (4.2) is fulfulled. If

6n+ 1 !c max (dist (xA 1 ), dist (x, A2))< 6n

then by (4.3)

<1
dist (x,A1 r) A2 ) <n

thus h satisfies (4.2).

Let us give some attention to those pairs of sets Aj, A2  that do

not separate decisively. This means, by definition, that there exists an

0 and a sequence (x such that
0 n

* -
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,ist 0 A1 - A2 )

(4.7) limr dist , A lir dist (x )A 0

n 47n" (xA n n )

Let X -R', A1 - {(x, y) y = 0), A2 = {(x, y) y e- . The

intersection of these sets is empty but for each 6 the sets B(A1, 6)

and B(A2 , 6) meet. The sequence {(n, 0)} satisfies (4.6), (4.7).

4.4 Example (compare [7])

Let X be a Hilbert space which orthonormal basis is denoted by

{e nin - I .Let

S t 2A1 ={ tCEX-:ZlA tn0E X : I n--

n= nn n= n

and

o

A t e E X:t= 1
2 n=l nn 1

The only common element of these sets is {el}. The sequence

e C+ nr I is distant from e1 by one. On the other hand, it is a

subset of A and for each n eI + en is distant from the element

Sl- e + en of A by I- J -1.n
n n I 1nb

In first of the two examples the sequence satisfying (4.6) (4.7) is

unbounded; in the latter example it is bounded. Nevertheless in both cases,

,,, , 4A - , _ . . ' - ' W --i~-



24

it is not compact. Compactness implies decisive separation, but is not

necessary.

4.5 Lemma

If one of the sets A1 A2 is compact and the other closed, then th

sets separate decisively.

Proof

Since X is metric it is enough to consider sequential compactness.

We shall prove that no sequence can satisfy (4.6) and (4.7). Indeed,

assume that A1 is compact and there are an E0 and a sequence {X}

satisfying (4.6) (4.7). Consequently there are sequences fyn} in Al,

{znil in A2 and f6n } 6n 1 0 such that p(xn, yn) < 6 n and

P(xn, zn) < 6 n" There is a subsequence {yn k} convergent to an element,

say y , of A1, thus {xnk ) {z n k converge to yo, too. On the other

hand, y., is in A (in view of the closedness of A2 ). This contradicts (4.

4.6 Example

X stands for a Hilbert space, like in Example 4.4. Put

n=1 n nn=1n

and

A-= , tne n  X:t 1 = l
n=1 t n

The only common point is {el). These sets separate decisively. To show

-
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that, denote by r2 = t2  Then A1 is included in
n= 2

t en x X:r',ltlT7T

In order to relate s to I we observe that

|S s-r

i+, -

I thus

K

( 4.8) s = (Z -I IT •

Whroe fer > 0 we ma y pick 6 -1 2  if it is less than I.

oThe following theorem shows how decisive separation characterizes

thus~~the metrically upper semicontinuous multifunctions, the intersection of -

which is also metrically upper semicontinuous.



4.7 Thocrem

a) Let F1, F, be multifunctions from a topological space Y into

subsets of X, u.H.s.c at y 0 ' If Fy 0  and F 2 y 0  separate

decisively, then the: intersection I F is u.H.s.c at y0 "

.Moreover, there is a modulus of semicontinuity of F 1  F 2  such that

(4.9) 0 (r) = h (P I(r) , 0 2 (r)),

where h is a modulus of separation of F 1y 0  and r 2y 0 , Pi is a

modulus of semicontinuity of r. (at y 0 ), i= 1,2.

b) If the sets A1 and A2 do not separate decisively, then there are

a (metric) space Y and u.H.s.c (at y 0) multifunctions F1, 12 :

g - 2x  such that

FIY 0 = AI, r 2 Y0 = A2 ,

the intersection of which is not u.H.s.c at y0

Proof

a) Let E' 0. There is a 6 " 0 such that B('ly0 l r 2 y0 , 6)

?.B(rIYoy6)nB(1"yo,6). Since r r2  are u.H.s.c. at y0, there are
1 2' 2

neighborhoods WIPW 2 of Y0  such that F1 W 1 CB(r'ly, 6) and

1W2 B(r2 y0 , 6) • Consequently (I 1 n r 2 )(W1 n W 2 ) CB(FI'Y 0 tr P2 y0, E).

To show (4.9) assume that x is in (rF1 r) r 2 )B(y0 ,r). Thus,

by semicontinuity dist (x, r y 0 ) " P (r) and dist (x, r yd< P 2 (r). In

view of (4.2) we may set P (r) = h(P (r), P 2 (r))

i" L



27

b) Suppose that AI and A2 do not separate decisively and let

{x n} be a sequence satisfying (4.6) (4.7). Define Y = [0, -c) and

FI_ = {Xn} n =1, 2,...in Zn n

10 = A 2, F20 A2

r ly = 2y )6 , otherwise.

So defined multifunctions are u. H. s .c at 0, but their

intersection is not.

4.8 Remark

Let A P A2  be given. If A1 is a subset of a ball, say B(x0, r0)

and for rI  r0 the sets A 1 and Af l B(x0, r1) separate decisively

then A1 and Az  separate decisively. Moreover there is a modulus of

separation of the latter equal to that of the former for small rl, r 2

4.9 Remark

Let CC CA1, O C A2 be such that C1 fn C z = A f A 2 If

A1 and A separate decisively, then C 1 and C z too (with the same modulus).

4.10 Remark

A decisive separation property has itself a semicontinuity character. For

two given subsets Aj, 2 of X define the multifunction A : ]R+ - 2x by

AO = A1 fI A2

Ar B(AI, r) n B(A*r), r> 0

Al, A separate decisively, if and only If the multifunction A Is metrically

upper semicontinuous at 0.

''



5. Rolewicz theorem and localization of metric upper semicontinuity.

In [15] Rolewicz introduced, what we call, c-stars and d-convc:x

sets, and proved that for two u.H.s c multifunctions IP 2 for which

rlY0 is a c-star and r 2y0  is d-convex (c> d), r 1 rF 2  is u.Ii.:•

at y 0 " His proof amounts, in practice, to demonstrating that Fly 0  ani

'Zy 0  separate decisively.

Let X be a normed space. A subset A of X is called c-conv.

at x 0 (CA), if for every x in A and for each 0 < a ' I there exist-

x in A such that

(5.1) xIa - (ax + (1- a)x 0 )II (- x)c -x

Of course, every convex set is c-convex for each c > 0 at each point.

The union of c-convex (at x 0 ) sets is c-convex at x 0 •

5.1 Lemma ([15])

Let F : X - Y be continuously differentiable about x 0  and such

that F (x 0 )X = Y. Then for each c> 0, there exists a ball Q (centerec

at x 0 ) such that the set

{x : F(x) F F(x 0 )} 0 Q

is c-convex at x 0 .

A subset A of X is called a c-star at x 0 , if for each x in

A the convex hull of

4



(5.2) B(xoo c Ix- X )U {x}

is included in A.

It Is a simple observation that A is a c-star at xo, if and
46-

only if for each x in A

(5.3) U B(ax 0 + (1- a)x, aclx-x 0 1 )C A
0< a<I

Certainly, each c-star at x 0 is c-convex at x 0 .

5.2 Proposition

Every c-star at x0 not equal to the whole space is bounded.

Proof

Suppose that A is a c-star at x 0  and there Is a sequence

{Xn} such that I Ixn l- xoI n.

Then by (5.3) for each n = 1,2, ...

B(xocn) C B(x01 cI Ixn- xOl) CA,

hence A= X.

We shall give a simpler proof of

5.3 Proposition [151

Every bounded convex set A for which x 0 is an interior point,

is a c-star at x O .

~ p.
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Proof

By assumptions there are numbers 0 r < M such that

B(x0, r) A B(x 0, M). We set c L and observe that for each

x in A B(xo, c x-x )- B(x0 , cM) r A. By convexity of A the

corivx hull (5.2) is a subset of A.

We note that for a family {A.) of c-stars at x U, Ai and

A. are c-stars at x 0 . Consequently, if {A.} is a family of convex
itI 1

sets such that B(x0, r) -'- Ai C B(x0, M) for each i, then U A. is a

r - star at x
M 0'

5.4 Theorem (Rolewicz [151)

Let O<d <cc 1. If A1 is a d-convex set at x 0 and A2 is

a c-star at x 0 , then A1 and A2  separate decisively and there is a

modulus of separation of the form

(5.4) h(rl, rZ) = i • (r I  + r 2 )

where m depends only on d and c•

The Rolewicz theorem is especially useful in localization of metric

upper semicontinuity. It is known [7] that if r is u.H.s.c at y0

(with modulus P) then for each r> 0 and each neighborhood Q of

x 0(Ey0) , there is a neighborhood Q 0 C Q of X0 such that Q0 r r

is u.H.s.c at y 0 with modulus (1 + E)P. The following example shows

that Q0 cannot in general be replaced by a ball about x 0 .

11
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L.5 Example

Let E be a (nonseparable) Hilbert space, {errc R a family of

orthonorn.al vectors in E, x a characteristic function of {re} r

A {(e, r) e E x F : O r c X(e)}

Equip E x R with the norm

i i(e,r)I I = sup([j el I, rl)

and define F : E - 2E x by

ry = A + (y, 0)

Of course r is closed-valued continuous multifunction, but no multi-

function A of form

c B(0, R) n I B(OR) n r

is u.H. s.c at 0. We shall show this fact for Ra 1. Let 0< E < R' 2

and pick an r such that R< r< R + . The element x= ((r- s)e -R)

is in A(- Eer) and x)B(AO,-). As I - erII s and e was

chosen arbitrarily A is not u.H.s.c at 0.

It follows immediately from the definition that for each r,> 0 the

ball B(x0, r)(or cY B(x0, r)) is a 1-star at x 0 * Therefore, if r is an

u.H.s.c multifunction (at y0 ) and ry 0  is d-convex at x 0 with

d .' 1, then B(x0, r) r r (and cl B(x 01 r) r r) is u.H.s.c at y0 in

virtue of Theorems 5.4 and 4,7.

I



5.6 Lemma

Let {A (x)} Xc be uniformly tangent to a family (-- at x()

For each d > 0 and every neighborhood Q of x0there are-

neighborhoods Q 0 CQ 1 CQ of x0such that for each A of c: u.

that An Q 0 / the set An Q I is d-convex at each v in AQ 0 .

Proof

Fix d > 0 and choose a neighborhood Q of x 0  Let -C

and let r 0  correspond to F- in (2.9) (2.10) and be such that

B(xr ) C Q. SetQ= x )Q B(O r

Let v be in Q 0 nA for A in a and let x be in Ar Q 1

By (2.10) there is v 1 in A (x) such that

(5.5) IJj-vH a J-VxH

The element (1-a )v + ax lies In A(x), thus there is an x. inA

such that

I Ia- (ax + (1- a)v1)I I it E(l - afl IV, - xiI

what combined with (5. 5) implies

(5.6) Ix - (ax +(1 -a)v 1 ) Ii I (- a) C(I + S) Iv -xI I

We estimate, taking into account (5.5) and (5. 6)

Na (X+ -aV 1a E +EjIV-X
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which is less than (I- a)dI Iv- xj I1 if we assume that d : 3. The

proof is complete.

The above lemma enables us to prove the following result concerninc

the Lipschitz continuity of the multifunction I (2.15), F: Y - 2S wherc

where S is defined by (2.13) under condition (2.12).

5.7 Theorem

If (2.16) holds, then there are a neighborhood W of y 0  a

neighborhood Q of x 0 and numbers c,r 0 > 0 such that for x in 0,

for y In r-lx n W and r s r 0 the multifunction

B(x, r) n r

Is Lipschltz continuous about y with constant c.

Proof

Let d < 1 • In view of Lemma 2.7 and Proposition 2.5 applied to

the multifunction

A(y,z) = {x : (y,z) 'E (x) + c

the family {A(y, z)}(y, z) possesses a uniformly tangent family at x 0.

A fortlori, the family ry = A(y, 0) has a uniformly tangent family at x 0 '

In vjrtue of Lemma 5.6 in every neighborhood V of x 0 there are

neighborhoods Q0 C Q1 C V of x0  such that for each y and x in

ry fl Q y yn Q, is d-convex at x.

Choose positive numbers r 0 and s o such that B(x0Y 2sO) CQO,



B(x0, 2r 0 ) Q1 and

r0 - s
c-- 0  0 "d

r 0

Let x be in Q B(x 0, so) and let r " r 0 . The ball B(x, r)

is a ---- star at each v in B(x, s). We choose s so that

r 0  to guarantee that B(x, r) is a c-star at such v.r r 0

On the other hand, by Theorem 2.6 there is a neighborhood W of

YO such that for every y in F-Ix n W there is a neighborhood Wy

of y with T- G(x, s) D Wy, or equivalently such that for each z

in Wy, Fz ' B(x, s) / 0. From the first part of the proof we know that

rz nI is d-convex at each v in ]z r, B(x, s).

Now each ball B(x, s) in consideration has the property that

B(x, s) + B(0, r 0 - S0) C- Qis thus we conclude on recalling Theorem 5.4

and Remark 4.8 that there is a function h of the form (5.4).'for

r < r0 - so which is a modulus of separation for each B(x, s) and rz

described above).

We conclude that the same is true about the sets B(x, s) r S and

Ez (Remark 4.9)

From the assumptions of our theorem in view of Theorem 2.6 and

Proposition 1.2 there is a neighborhood V of x0 and a neighborhood

W of y0 such that for y in W the multifunctions (1.7) are metrically

upper semicontinuous (at a universal piecewise linear rate). We may assume

that V that appears at the beginning of the proof is equal to this just

introduced.

On the other hand, y - B(x, s) n S is a constant, thus metrically

upper errontinuous multifunction (with the rate q(r) )

___ ft M M M BEV



Therefore, by Theorem 4.7 (a), the multifunction Fr B(x, r) is

u.H.s.c at each element of WY.

The uniform linear rate of semicontinuity (of all these multifunctions)

at all points implies Lipschitz continuity.

It is of great importance in optimization to establish the Lipschitz

continuity of so-called primal functionals [21 [15] [7] . Let f be a real-

valued function on S (2-.13) locally Lipschitz continuous about x 0 . The

primal functional of (f, F) restricted to Q is the real-valued function

on Y:

fFQ(Y) = inf (f (x)
X E ry n Q

5.8 Corollary

Under the assumptions of Theorem 2.6, there are neighborhoods W

of Y0  Q of x0 and a number r 0 such that for each x in Q for

every y in F-1x n W and for r a r0, the primal functional of (f, r)

restricted to B(x, r) is locally Lipschitz at y. There is a universal

Lipschitz constant for all such primal functionals.

Proof

Appl y Theorem 5 .7 together with [5].

I

_ . . . 11..-,.



6. Decisive separation of weakly separated sets

The sets A1,A 2 , the decisive separation of which we disc-u.--

this section, have the property

(6.1) xE A1 nA => xE 8A 1 aA 2

where a stands for the topological boundary. We shall consider sets c:

the form

(6.z) A,= {x: f,(x) 0}, A2 = {x: f2 (x)1 0}1

where f1, f 2  are real-valued functions on a Banach space X.

Property (6.1) links the study with optimization theory; decisive

separation of sets satisfying (6.1) is crucial in sensitivity theory, a

branch of optimization ([4j).

6.1 Proposition

Suppose that the functions f 1 f 2  are continuous and the sets (6.2)

satisfy (6.1). Then if the set

Al Az

is nonempty it is the set of all the global solutions of the problem

(6.3) f1(x) -inf, f2 (x)a 0

INNI (R ___
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Proof

If x is in A., then fI(x) 2 0, because otherwise by the

continuity of f there would be a neighborhood Q of x such that

Q C {v : f1(v) < 0} C A1 , contradicting (6.1) . Since A1 A2  is

nonempty, there is an element x of A such that f1(x) a 0; conse-

quently inf f1(x) = 0 and every element of A1 A2  is a solution of

f2 (x) r 0
(6.3). On the other hand every solution x of (6.3) satisfies f1(x) r 0

and f 2 (x) : 0.

6.2 Corollary

If the functions f1, f 2  are differentiable and the sets (6.2) satisfy

.then or each X in A A there are positive nunibers
1.2

not both zero such that

(6.4) x1f1(x) + X2f2(x) = 0

If besides f1, f 2  are twice differentiable, then

(6.5) xf I 1 (x) +x 2f 2 (x) 2 0

Formulas (6.4) and (6.5) follow from well-known necessary con-

ditions for an x to be a local minimum at (6.3). Under additional

assumptions the sets of type (6.2) associated with (6.3) fulfill (6.1)

([4]).

In the sequel, we shall assume that for an x 0 in A1 n A2 0

'a ll

,,sw. i mm " 
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(6 .U ) fl X ) O'f3-O

Then there will be a strictly positive \ such that

(6.7) f (x0 ) f2 (x0 ) 0

6.3 Theorem

Let AI, A, satisfy (6.1) and be of the form (6.2) where f, f?

are continuously differentiable.

Assume that an x 0  in A, r satisfies (6.6).

Let be an isomorphism of ker fI(x 0 ) x P. onto X such that

((0, 0) x 0 . Then there are neighborhoods W1 of 0 in ker fj(x 0 ),

W of 0 in R and Q of x 0  in X and real-valued functions

l' O2 on ker f1(x 0 ) such that Q = (W1 x W ) and

(x fi(x)-- 0} n Q = j{(y, r) : r = (y), y 4 W,}

The sets A1  Q, A 2 n Q separate decisively, if and only if the multi-

function A:

(6.8) Ar =A {y : (l(y) - (P2(y) = r)

is metrically upper semicontinuous at 0.

Proof

It follows from Proposition 2. 5 and from (6.6) that

Y ker fl(x0 )= ker fz(x 0 )

N4



!3' tunc;(nt ( 0t xO) tc ix : f(x) 0} and to {x : f2 (x) = 01. We

::hcll reoresent these two sets locally about x as functions on Y.

Let ( be an isomorphism of Y XlR and X such that

(0, 0)- xO. For a function f on X define f: Y x]R- R by

.(y,r)= f c i(y,r) •

The partial derivatives of f are

(6.10) f (y, r)h f (i(y, r)) c(h, 0)
y

r(y, r)s =f'(i(y, r)) j (0, s)
r

If ker f (x) Y, then y(O, 0) = 0 and (0, RO = . Consequently

([I] , there are neighborhoods W1 of 0 in Y and Wz of 0 in

JR and a function ( : W1 - W such that

(6.11) {(y, r) : r : (y), y E Wj {(y,r) : ?(y, r) = 01 n(W1 x Wz)

The set (6.11) is the preimage by i of

(x: f(x) = 0} fl Q

where Q is a neighborhood of x 0 . If now pl p correspond to

f and f., then we may pick W1, W2  and Q good for both the

functions.

By Lemma 4.1 the decisive separation of the sets A1 n Q and

1<
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and A2 n Q is equivalent to the same property of - (A1  Q), ,-(A' .

We may assume without loss of generality that 91(y) z p,(y) fcr y WV

and consider the decisive separation of the sets

Cl = y,r) : r kl(y)} n W1 x W?, Gz= {(yr): r!S p(y)} r W 1 X ,
2 1

The neighborhoods Q, W P W2  might be chosen so that for

(y, r) E W 1 x W2

(6.12) 471(y) - r : 2 dist ((y, r), C1 )

r - 92(y)9 2 dist ((y, r), C 2 )

Indeed, for (y, r) in W 1 x W 2 we have that

dist ((y, r), C 1)A 4,1(y) - r

dist ((y, r), C 2 ) • r - 'P2 (y)

Thus

(6.13) dist ((y, r), C1 ) + dist ((y, r), C2) a (l(y) - (2(y)

The derivative of the function 9, is

(6.14) pl(y) = - (y, •(y)) y', 91(y))

thus is continuous and vanishes at 0.

It follows that for all y, y in a neighborhood of 0 (say W1 )

MM w-!~'~ ~



9 1(y) a 41(y) + y- y,

Consequently, for y, y in W1

Plly) - r• ig 17 rl + j 1 - yi

A 2 {(;'- r)Z- + it y 2

Therefore, if y is in W 1 and (P2 (y) a r i ol(y), then

(6.15) l(y) - q 2 (y•) 2 (dist((y, r), Cl) + dist ((y, r), C2 )1

On the other hand, (y, r) is in C n C?, whenever y is in

A= {z : ,1(z) - p2 (z) = 0) and r = epl(z). We have the estimates

dist (y,A) S dist ((y, r), C1 P C ) , XdistZ (y,A) + (Vl(y) - p2 (y)2

which together with (6.13) and (6.15) complete the proof.

6.4 Example

Assume now that, in addition to hypotheses of Theorem 6.3, the

functions f'1 f2  are twice continuously differentiable. In view of

Corollary 6.2 and Formula (6.6)there is X> 0 such that

! I

fl(x0 ) - Xf 2 (x 0 )

f (x0) + Xf(x a 0

We shall assume that there is a k > 0 such that £

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Ad



4--

(6.!:) f](x 0 )(h, h) + \ f(x 0 ,h h h k 2 h c r f>

b. Proposition

If formulae (6.1), (6.6) and (6.16) hold, then there is a neighbor-

hood Q of x 0 such that the sets A1 Q Q and A N Q separate

decisively.

Proof

In view of Theorem 6, 3 we should prove that the multifunction (6. 8)

is u.H.s.c at 0. Denote: %4(y) = 9 1(y)- i2 (y), where I'i' q are

those introduced in the previous proof. Using formula (6.14) we may compute

the second derivative of o(= 91' 2)

m (y)(h.h) :

(6:7) 2 ry(y, 9(y))h + f(y, q(y)) f y(y)h) f(y, 9(y))h
f r (y ' q(y))y

-1, - ( Y(y, P(y))(h, h) + f yrY '(y))h (p (y)h)
fr(y, .(y))y

Since Y ker f (xo) we have

(6.18) y (0)(h,h)- I f (xo)(i(h, O),I(h, 0))
f (xdi9O, 1)

Therefore, by (6.7)

'A
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I(f (x 0)(h, h) + \2X0)h h)) hckrf(
(f 1W . (,X 0) h0 1)e f (

(We identify (,h, 0) with h). In view of our choice
4-t

G, I , f1 (x 0 )((0, 1) '0, hence by (6.16)

Since 65(0) 4(0) z 0, there is a neighborhood V of 0 in which

The proof is complete.

a.
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7. Conclusion

Proposition 6.5 constitutes a simple example of higher order suffici, :-

condition for uniform lower semicontinuity. It applies to the multifuncticr,

j- 1 , when the first derivative vanishes (critical point). In similar cir-

cumstances first order conditions (by which we understand the Lusternik-

type conditions presented in Sections 2 and 3) cannot be used and

higher derivatives should be taken into account in establishment of semi-

continuity properties of multifunctions. It was pointed out in Section 6 that

higher order sufficient conditions are crucial in sensitivity theory, where

the nature of problems excludes applicability of first order conditions.

Another failure of first order conditions is illustratec

in Example 3.3. Note that the discussed multifunction G -  may be

represented as the intersection of two u .H. s.c multifunctions defined on

F 2 and valued in X, namely

G-1 (rl, r ,) = {x : gl(x) = rl} n {x : g2 (x)= r2 }

Again we face a problem of the metric upper semicontinuity of an intersection.

In a similar context a use of higher order conditions may turn out of

great value, when the usual constraint qualifications fail. This conclusion

may sound like an introduction to a study of higher order conditions for

semicontinuity. I hope to carry out such a study one day.
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